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Abstract

We explore an optimal token holding and staking problem for cryptocurrency investors.

Our investigation revolves around understanding the tradeoff between staking rewards/utility

and the consequent illiquidity that emerges as a result of investor heterogeneity and the

distinct structure of blockchain platforms or Decentralized Autonomous Organizations

(DAOs). We present comprehensive analytic solutions, which enable us to examine the

novel facets and implications stemming from the staking mechanism for trading and stak-

ing policies and the dynamics of risk-taking behaviors. These insights extend beyond to-

ken investments devoid of staking rewards and conventional investment avenues, such as

stocks and commodities.
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1. Introduction

Staking presents a distinctive and captivating aspect of cryptocurrency investment that sets

it apart from traditional assets such as stocks, bonds, and commodities. Typically, investors

engage in staking for two primary reasons: (i) to generate additional income and/or (ii) to

actively contribute to the decision-making processes of a blockchain platform. With regard to

the first purpose, the staking reward commonly involve compensating block validators within

a platform that operates on the Proof of Stake (POS) mechanism. However, given the prolif-

eration of Defi (Decentralized Finance) applications, yield farming protocols, and even Cen-

tralized Exchanges (CEXs), individual investors can now readily stake their tokens through

delegation services offered by these platforms to earn supplementary income. In terms of

active participation, the rise of Decentralized Autonomous Organizations (DAOs) has been

notable.1 DAOs primarily function as decentralized entities making governance and invest-

ment decisions. These decisions are typically determined through voting among investors who

stake governance tokens on the platform (see Section 2.2 for more details). Stakers, or voters,

are often enthusiastic investors who derive utility from participating in the decision-making

processes of the DAO.

It is important to consider that staked tokens while providing rewards or utility through

active investing, come with the drawback of illiquidity associated with frictions and costs in-

herent in blockchain platforms or DAO (e.g., lock-up periods and unlocking fees). Conse-

quently, the tradeoff between the benefits (reward/utility) and the illiquidity has a substantial

influence on the decision between holding tokens in a liquid account versus staking them in a

locked account. This paper aims to formalize the problem faced by a cryptocurrency investor

(or agent interchangeably) in navigating this tradeoff and to investigate the agent’s optimal

trading strategies and their novel implications arising from the staking mechanism.

To accomplish this, we expand upon a standard continuous-time model of the agent’s con-

sumption and portfolio selection problem by introducing the tradeoff. The agent’s wealth

consists of three components: cash, liquid token holdings, and staked token holdings. Follow-

ing the framework of the utility platform literature (e.g., Cong et al. (2022b, 2021b) and Cong

et al. (2021a)), we also assume that the agent can derive utility not only from consumption but

also from staking tokens. More specifically, we consider heterogeneity in the agent’s prefer-

ence indexed by the relative weight on the utility from staking tokens. The agent is called an

active participant if the weight is high and a general investor if the weight is low. For example,

active participants include initial founders, members of the DAO team, early participants, and

blockchain developers. On the contrary, general investors have zero or relatively low utility

1Insert here about the total market cap of DAOs from the CoinMarketcap data as of June 2023.
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from staking and thus primarily engage in staking to earn extra income.

Our theoretical contribution is that the solution analysis introduces a novel approach by

utilizing the duality principle to formulate the dual problem with two singular controls. One

control governs the trajectory of the number of staked tokens, while the other enforces the

nonnegativity of wealth (in compliance with the borrowing constraint). We demonstrate that

the highest dual value achievable through staking decisions, given any strategies satisfying the

borrowing constraint (maxmin), is equal to the lowest dual value enforced by the borrowing

constraint, given any staking strategies (minmax). This equivalence between the maxmin and

minmax operations implies that the agent’s problem can be interpreted as a zero-sum game

aimed at achieving the dual value.

We derive fully analytic solutions, uncovering the existence of an inaction interval where

the agent does not change their staked position (i.e., neither stake additional tokens nor unlock

the staked tokens). Whenever the ratio of wealth to the value of currently staked tokens reaches

a threshold level, the agent stakes additional tokens. Conversely, when wealth reaches zero,

the agent’s behavior depends on the cost of unlocking staked tokens. If the cost is low, the

agent optimally liquidates staked tokens to prevent wealth from depleting to zero. If the cost

is high, unlocking the staked tokens is never optimal. Instead, the agent engages in short-

selling of liquid tokens to offset the staked token position, ensuring that total wealth never

reaches zero.2

The model provides significant insights into optimal staking behaviors. First, we find that

the frequency of changing the staked token position increases as the cost decreases or the re-

ward increases. A lower cost allows for more frequent position adjustments, while a higher

staking reward incentivizes greater token staking. Furthermore, an intriguing finding regard-

ing frequency is that active DAO participants change their staked position more frequently

than general investors. This result may initially seem counterintuitive since active DAO par-

ticipants resemble long-term investors, and as such, they are expected to maintain a sticky

staked position. However, active participants derive greater utility gains from staking, mak-

ing them more inclined to increase the number of staked tokens in response to even small

increases in wealth. Therefore, the frequency of changing the staking position increases as the

agent gains greater utility from staking.3

Second, let us explain the optimal investment and consumption strategy. As the token

price increases within the inaction region, the optimal decision is to increase both consump-

2Note that short selling of cryptocurrency tokens is available on many cryptocurrency exchanges through per-

petual futures contracts or margin requirements.
3We perform simple empirical tests to verify this result by using the onchain data of the DAO platforms such as

Maker DAO, Aave DAO, and Lido DAO (see Section A of the Appendix).
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tion and liquid token holdings. However, the ratio of consumption to wealth decreases as

wealth increases, while the ratio of liquid token holdings to wealth increases. Essentially, as

wealth increases, the agent becomes more inclined to take on additional risk. There are two

underlying factors contributing to this result: (i) as wealth increases, the borrowing constraint

becomes less restrictive, allowing for greater risk-taking, and (ii) by increasing investment in

liquid tokens, there is a higher possibility of reaching the upper boundary, leading to higher

future rewards.

Third, this propensity for risk-taking bears significant dynamic implications for individual

token holdings. While in the standard Merton model the ratio of risky asset holdings to total

wealth is constant, our findings diverge in the case of investing tokens with staking: the ratio

of risky token holdings to total wealth can be notably higher during good times compared to

bad times, owing to the risk-taking effect spurred by the staking mechanism. This noteworthy

revelation underscores the distinct investment patterns between individual cryptocurrency in-

vestors, particularly stakers and non-stakers. Precisely speaking, non-staking is not considered

optimal given the presence of a staking reward. A non-staker in our context refers to an in-

vestor who is unable to stake the tokens by any reason. For example, this investor exclusively

trades the cryptocurrency in a centralized exchange that does not provide staking services for

the token. In this case, stakers exhibit a tendency to hold substantially higher token amounts

in good times, while they hold relatively fewer token amounts in bad times when contrasted

with non-stakers’ holdings.

Forth, we discover that the impact of the staking reward differs significantly depending

on the type of investor. For general investors, an increase in the staking reward results in an

increase in the staking ratio (i.e., the proportion of staked tokens out of total token holdings).

However, for active participants, an increase in the staking reward leads to a decrease in the

staking ratio. To comprehend this seemingly counterintuitive finding, it is important to note

that staking provides the agent with an additional income stream, making the problem analo-

gous to a standard consumption-investment problem with stochastic income. When the stak-

ing reward increases, the agent’s total wealth effectively rises, which holds true for all types of

investors. The difference lies in the allocation of the increased total token holdings. For gen-

eral investors, the increase in staked tokens outweighs the increase in liquid token holdings,

while the opposite is true for active investors. As the staking reward increases, active par-

ticipants, who have a relatively higher marginal utility from staking than from consumption,

exhibit higher risk aversion, implying that unlocking staked tokens incurs a greater utility loss.

Hence, active participants decrease the staking ratio while the total token holdings increase,

driven by the income effect.
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Finally, we explore an extended model wherein the agent engages in both the cryptocur-

rency market with staking and an additional risky asset, such as stocks or other cryptocurren-

cies that lack a staking mechanism. This consideration grows in significance due to the rapid

growth of cryptocurrency’s share in households’ total portfolios worldwide.4 We present the

analytical solution for the extended model, along with its associated implications. Firstly, the

staking ratio may vary, either higher or lower, when the agent invests in both markets com-

pared to investing in a single cryptocurrency. This variation depends on the characteristics

of the investors and the wealth effect. Secondly, and of particular interest, the correlation be-

tween the staking cryptocurrency and the additional risky asset is important. The ratio of the

total asset holdings to the staking position diminishes as the correlation between the two as-

sets increases. This finding holds significance considering that the majority of cryptocurrencies

exhibit relatively high correlations with each other. Consequently, investors holding staking

tokens primarily tend to possess corresponding tokens rather than another non-staking cryp-

tocurrencies.

Literature review: Our paper is situated within two different streams of literature: the classi-

cal consumption-investment literature and the rapidly expanding literature on the POS mech-

anism. In relation to the consumption-investment literature, our theoretical framework builds

upon two types of models. Firstly, we build upon the models that incorporate illiquid assets

or durable goods, such as those proposed by Grossman and Laroque (1990), Cuoco and Liu

(2000), Flavin and Nakagawa (2008), Dai et al. (2011), and Chetty and Szeidl (2016). Secondly,

we extend the models that consider transaction costs, as examined by Davis and Norman

(1990), Shreve and Soner (1994), Cadenillas (2000), Jang et al. (2007), and Dai et al. (2015). The

former class of models investigates investment involving two different types of assets: liquid

assets, like stocks, which have no trading friction, and illiquid assets, like housing, which have

trading frictions. The latter class exclusively focuses on stock trading with transaction frictions.

In contrast, our model explores cryptocurrency investment, which introduces the unique ele-

ment of staking in addition to holding liquid tokens. Consequently, investors must determine

the optimal allocation between liquid and illiquid positions for the same asset. Therefore, our

model captures this distinctive feature of cryptocurrency investment.

The POS literature includes notable contributions from Cong et al. (2022a), John et al.

(2022), Rosu and Saleh (2021), and Saleh (2021). Their primary focus is on various aspects

of POS, such as determining the equilibrium staking reward (Cong et al. (2022a) and John

4For example, according to Weber et al. (2023) who analyzed survey data from roughly 80,000 U.S. households,

the proportion of individuals owning any cryptocurrency significantly increased between 2021 and 2022 from ap-

proximately 3% to 11%.
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et al. (2022)) or identifying the conditions for achieving the POS consensus (Rosu and Saleh

(2021) and Saleh (2021)). In contrast, our research diverges from the existing literature by in-

vestigating the impact of the tradeoff between the staking reward and illiquidity on individual

investors’ portfolio choices. We consider the presence of heterogeneity among investor types

and staking frictions, which are determined by the specific characteristics of blockchain plat-

forms or decentralized autonomous organizations (DAOs).

Technically, our paper builds upon the framework of singular control problems, as ex-

plored by Abel and Eberly (1996), Miao and Zhang (2015), Choi et al. (2022), and Choi et al.

(2023a). Additionally, we extend the analysis of the zero-sum game problem, as examined by

Farhi and Panageas (2007).5 In our problem, we encounter two singular controls, and the min-

max and maxmin problems associated with determining the operational order of these two

controls share a similar nature to a zero-sum game problem. To address this challenge, we

develop a novel duality method that enables us to effectively handle problems involving two

singular controls.

The rest of the paper proceeds as follows. Section 2 provides the model. The solution

analysis and the optimal policies are presented in Section 3. Section 4 investigates various

implications of the optimal policies. In Section 5 we extend the model to the case where there

is an additional risky asset such as a cryptocurrency with no staking mechanism or a stock.

Section 6 provides concluding remarks. Appendix A provides simple empirical results. All

the proofs are in Appendix B.

2. Model

We consider an agent’s problem of optimal consumption and investment in the cryptocur-

rency market. We first describe the mathematical setup of the model in Section 2.1. Then, in

Section 2.2, we provide a detailed description of the model, including how to interpret the key

parameters of the model.

2.1. Setup

A platform (or a DAO) issues a cryptocurrency token. Assume that the price dynamics of the

token is given by
dSt

St
= µdt+ σdBt,

5The zero-sum game interpretation of the optimal portfolio selection and stopping time problem is exclusively

found in the Online Appendix of Farhi and Panageas (2007).
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where Bt is a standard Brownian motion in a probability space (Ω,F ,P), µ is the expected

growth rate of the token price, and σ is its volatility. µ and σ are positive constants. We will

provide a discussion for the token usages or rights in Section 2.2.

At each time t, the agent determines its consumption level and the allocation of funds

between tokens and a risk-free asset that provides a constant rate of return r > 0. Additionally,

besides holding tokens, the agent has the option to stake some of the tokens on the platform.

Staking serves two purposes: acquiring governance rights and earning additional income.

The relative strength of these motivations depends on the agent’s preferences, which will be

explained in detail later. With regard to staking rewards, the agent can either stake directly on

the platform or delegate their tokens to staking service providers.6

Consider xt as the number of tokens held by the agent (not staked), and let kt represent the

number of tokens staked at time t. Therefore, the agent’s total token holdings can be defined

as πt := xt + kt. The dynamics of kt is given by

dkt = −δktdt+ dG+
t − dG−

t , (1)

where G+
t (or G−

t ) is the cumulative amount of tokens being staked (unlocked) at t and δ > 0

represents the depreciation rate of the staked tokens by being slashed, hacked, burned, or paid

for the management fee of the DAO (see Section 2.2.3.) The agent earns rewards over time

that are proportional to its staking amount. Specifically, the instantaneous staking reward is

expressed as ϕktStdt, where ϕ is a constant (see Section 2.2.1). Conversely, there is a cost as-

sociated with unlocking the staked tokens, denoted as ρStdG−
t , where the constant ρ ∈ [0, 1)

represents the token deduction rate per unit of token withdrawal (see Section 2.2.2). It is as-

sumed, without loss of generality, that there is no cost when locking up tokens for staking.7

Let Wt be the agent’s wealth at t. Wt consists of three components: liquid token hold-

ings, risk-free assets, and staked (or illiquid) token holdings. Then, these three components

determine the wealth dynamics dWt as follows with an initial with W0 = w0:

dWt = πtdSt + r(Wt − πtSt)dt+ ϕktStdt− StdG+
t + St(1− ρ)dG−

t − ctdt

= [rWt + (µ− r)πtSt + ϕktSt − ct]dt− StdG+
t + (1− ρ)StdG−

t + σπtStdBt, (2)

where πtdSt is the instantaneous change of the value of the total token holdings, r(Wt−πtSt)dt

is the change of the risk-free asset holdings, ϕktStdt is the instantaneous reward from the

6For example, StakeWise, StakeWithUs, Stakin, Staking Facilities, Stake.fish, and most cryptocurrency ex-

changes provide staking services.
7Alternatively, it could be assumed that there is a cost when locking up tokens, as long as the cost of unlocking

is higher than the cost of locking, thereby preserving the main results.
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staked token holdings, ctdt is instantaneous consumption, and ρStdG−
t is the cost from un-

locking tokens.

Finally, the agent’s problem is stated as follows. Given the initial wealth W0 = w, the initial

staking k0 = k, and the initial token price S0 = s, the agent maximizes his/her expected utility

by choosing consumption (ct), liquid token holdings (xt), and staking decisions (G+
t and G−

t ).

More precisely, for ω ∈ (0, 1],

V (w, k, s) := max
(ct,xt,G+

t ,G−
t )

E
[∫ ∞

0
e−βt (ωu1(ct) + (1− ω)u2(ktSt)) dt

]
(3)

with (W0, k0, S0) = (w, k, s) subject to the budget constraints (2) and the borrowing constraint:

Wt ≥ 0 for all t ≥ 0, (4)

where β > 0 is the subjective discount factor and ω is the weights between utilities from

consumption and staking. In our model, we suppose u1(z) = u2(z) = u(z) with

u(z) =
z1−γ

1− γ
, γ > 0, γ ̸= 1.

Note that the agent with ω < 1 has utility (1 − ω)u(ktSt). This can be interpreted as the

utility gains obtained from transacting on the platform, which is commonly assumed in utility

token platform models (e.g., Cong et al. (2022b, 2021b) and Sockin and Xiong (2023)). In the

case of a DAO, we can alternatively assume that the agent also derives utility from staking

tokens, as staking enables participation in voting and various governance decisions of the

DAO, including investment decisions. The utility increases with the total value of staking,

ktSt, as a higher stake corresponds to greater voting power.

2.2. Background

This section offers detailed information on our modeling approach. Understanding the model

hinges on the staking mechanism utilized by the blockchain platforms along with the objec-

tives, structure, and functioning of the DAOs. Notably, the sign and magnitude of key pa-

rameters dictate the characteristics of both the platforms and the DAOs. Before we delve into

a detailed explanation of the three essential parameters, let us initially address the following

two preliminary aspects.

Firstly, an increasing number of blockchain platforms are adopting Proof of Stake (POS)

as the underlying consensus mechanism instead of Proof of Work (POW).8 In the POS mecha-

nism, block validators are required to stake tokens, similar to miners in the POW mechanism.
8This shift stems from the high transaction costs associated with POW and the widespread criticism of the

substantial fossil energy consumption it entails.
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Rewards comprise two components: block rewards and transaction fees paid by customers

when executing smart contracts for various purposes. In our model, we do not differentiate

between block rewards and transaction fees. Instead, we assume that during each short time

interval [t, t + dt), an investor receives a total of ϕktdt tokens. Furthermore, in some cases,

even if a platform does not employ the POS mechanism, investors can still earn yields by

staking tokens through specific services such as flash loans, collateralized lending, and CEXs.

Therefore, thanks to the development of various DeFi services, investors can earn rewards by

staking tokens not only from POS-based platforms but also from POW-based platforms and

other consensus mechanisms.

Secondly, certain DAOs grant governance rights to token stakers, similar to the equity own-

ership rights associated with stock holdings. As a result, stakers in a DAO receive tokens as re-

wards generated by the tasks undertaken by the DAO or the projects in which the DAO invests.

This type of DAO resembles a conventional investment club, with a crucial distinction be-

ing that a DAO operates through decentralized decision-making processes on the blockchain,

where investment decisions are made through voting by token stakers. The Ethereum DAO

in 2015 was the pioneering example of such a setup. In this context, investment propos-

als are submitted and approved by voting of the staker, after which stakers receive returns

from the investments. Since then, DAOs have focused primarily on on-chain investments, in-

cluding NFT trading, cryptocurrency investments, or ICOs (Initial Coin Offerings) within the

DeFi ecosystem. However, more recently, DAOs that specialize in off-chain investments have

emerged. For example, since the approval of Wyoming’s SF0038 legislation, several offline-

based DAOs have emerged (https://www.wyoleg.gov/Legislation/2021/SF0038). These

DAOs, like investment clubs, aim to invest in various assets, including physical and virtual

assets, by leveraging diversification and risk-sharing principles, as well as relying on the wis-

dom of the crowd. Given this context, we assume that the DAO generates a constant flow of

investment returns denoted by ϕ, which is distributed to the stakers.

With these two scenarios in mind, we provide more detailed explanations of the important

model parameters in Sections 2.2.1, 2.2.2, and 2.2.3.

2.2.1. Staking reward

The condition ϕ > 0 simply signifies that the agent receives a reward by staking tokens in a

POS staking pool or by participating in an investment club-like DAO.

It is important to note that the staking reward ϕktStdt directly affects the budget dynamics

in Equation (2). This indicates that the reward is provided in the form of liquid tokens. How-

ever, in certain staking pools, the reward tokens may not be withdrawable immediately and
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may be subject to a lock-up period. The agent has the option to stake tokens directly on the

platform through a smart contract designed for staking. Alternatively, there are indirect meth-

ods of staking through delegators, such as decentralized applications for staking and yield

farming and centralized exchanges. Many investors opt for these service providers despite

paying service fees. In the case of using such services, the reward rate ϕ may be lower than the

actual reward rate offered by direct on-chain staking. However, this consideration primarily

has a quantitative impact and does not alter the qualitative findings of the model. It is impor-

tant to note that indirect stakers are unable to participate in the decision-making processes of

the DAO. In other words, these indirect stakers are general investors who do not derive utility

value from holding tokens in our model.

2.2.2. Cost from unlocking the staked tokens

The condition ρ > 0 indicates the presence of costs associated with inconveniences, illiquidity,

gas fees, or disincentives when unlocking staked tokens. These costs arise due to factors such

as the existence of a locking period. To aid in the clarity of the explanation, let us consider the

following three cases:

A. In the context of individual on-chain staking, smart contracts strictly enforce a locking

period. This means that investors are unable to unlock their tokens until the designated

locking period has elapsed.

B. However, it is important to note that many recent DeFi staking protocols and CEXs offer

staking services that allow investors to unlock tokens before the enforced lock-up pe-

riod ends. This early unlocking option is possible because these providers manage their

own token inventory and pool customers’ tokens. Instead of preventing early unlocking

outright, these providers impose a penalty fee against unlocked tokens ahead of time.

C. Additionally, it is worth highlighting that Proof of Stake (POS) protocols featuring lengthy

locking periods often give rise to a market for staked tokens, where they are traded at a

discount in comparison to liquid tokens. As an illustration, during Ethereum’s transition

from Proof of Work (POW) to POS, the price of staked Ethereum was consistently 1-9%

lower than that of regular Ethereum. This price difference was attributed to the inability

to unlock staked tokens within the migration period (see: https://www.bitstamp.net/

markets/eth2/eth/). In this case, ρ can be interpreted as the price disparity between

liquid tokens and illiquid staked tokens.

Note that our model primarily focuses on Cases B and C mentioned above rather than

Case A. In Case A, the gas fees associated with locking and unlocking are the same. However,
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in Cases B and C, locking usually involves zero fees, and if applicable, these fees are much

smaller compared to unlocking. We believe that the prominence of Cases B and C has grown

among investors, largely attributed to the rapid expansion of the Defi market.

2.2.3. Depreciation: Slashing, Hacking, Burning, or Management fees

The depreciation rate of the staked tokens, indicated as δ > 0, can have different implications

depending on the nature of the DAO. In POS platforms, a slashing mechanism is often imple-

mented to discourage any misbehavior from stakers. Slashing may be required as part of the

consensus mechanism, even if a staker has no intention of misbehaving. For instance, in cer-

tain protocols, stakers are responsible for posting instantaneous prices of specific tokens from

different exchanges during each block validation. If a posted price significantly deviates from

the mean or median value of all postings, the corresponding staker may be penalized, result-

ing in a portion of their staked tokens being slashed. Burning of staked tokens can also occur

in a DAO as a result of voting. Stakers can also experience token loss due to security attacks

or storage failures, as the IP address of a staker is often exposed for an extended period within

the network. It should be noted that δ can also be interpreted as managerial or operational

expenses, particularly for off-chain DAOs. In this case, the expenses are typically shared by

stakers in proportion to their staking amounts. Costs may increase linearly with the number

of tokens that are staked. For example, such costs could include hiring specialists like lawyers,

accountants, or realtors if the DAO invests in physical assets. Tokenizing these assets requires

proper offline registry services. As the DAO continuously buys and sells off-chain assets over

time, registry services are necessary and incur associated costs.

In summary, we consider all the scenarios of losing staked tokens due to slashing, hacking,

burning, and management fees as depreciation. As the cumulative impact of these possibilities

is typically low, the result is a gradual depreciation of staked tokens over time.

3. Analysis

In this section, our approach begins by deriving a dual singular control problem corresponding

to the primal Problem (3). Subsequently, we obtain the explicit solution to the dual problem.

By utilizing the duality relationship, we recover the value function and, in turn, obtain the

optimal policies.
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3.1. Singular Control Problem

Let Ht ≡ e−rtζt, where ζt = e−
1
2
θ2t−θBt with θ ≡ (µ−r)/σ. The wealth process in (2) is rewritten

as the static budget constraint as follows:

E
[∫ ∞

0
HtDtctdt

]
+ E

[∫ ∞

0
HtDtStdG+

t

]
︸ ︷︷ ︸

(i)

≤ w0 + E
[∫ ∞

0
HtDtϕktStdt+

∫ ∞

0
HtDt(1− ρ)StdG−

t

]
︸ ︷︷ ︸

(ii)

, (5)

where {Dt}∞t=0 is a positive, non-increasing, and right continuous with left limits process start-

ing at 1. It is important to note that, in comparison to the static budget constraint typically

considered in standard portfolio selection problems, constraint (5) in our case incorporates

two additional terms, denoted as (i) and (ii), which capture the fundamental nature of the

staking problem. Specifically, the left-hand side of inequality (5) represents the sum of the

present value of the future consumption stream and the present value of money used for stak-

ing tokens over time (term (i)). On the other hand, the right-hand side represents the sum of

the initial wealth and term (ii). Term (ii) consists of the present value of the reward streams

generated by the staked tokens and the present value of money earned from unlocking the

staked tokens.

Using (5) we set up Lagrangian L as follows: for a Lagrangian multiplier y > 0

L :=E
[∫ ∞

0
e−βt (ωu(ct) + (1− ω)u(ktSt)) dt

]
+ y

(
w + E

[∫ ∞

0
HtDtϕktStdt

]
− E

[∫ ∞

0
HtDtctdt+

∫ ∞

0
HtDtStdG+

t −
∫ ∞

0
HtDt(1− ρ)StdG−

t

])
≤J (y, k, s; {Dt}∞t=0, {G+

t ,G
−
t }∞t=0) + yw0,

(6)

where J (y, k, s; {Dt}∞t=0, {G
+
t ,G

−
t }∞t=0) is given by

J (y, k, s; {Dt}∞t=0, {G+
t ,G

−
t }∞t=0) :=E

[∫ ∞

0
e−βt

(
ωũ

(
Yt
ω

)
+ (1− ω)u(ktSt) + ϕYtStkt

)
dt

−
∫ ∞

0
e−βtYtStdG+

t + (1− ρ)

∫ ∞

0
e−βtYtStdG−

t

] (7)

with Yt := yeβtHtDt, and

ũ(z) := sup
c>0

(u(c)− yc) =
γ

1− γ
z
− 1−γ

γ .
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We will derive a variational inequality using J . To do so, first, we establish the following

weak-duality:

V (w0, s, k) ≤ inf
y>0

sup
{G+

t ,G−
t }

inf
{Dt}

(
J (y, k, s; {Dt}∞t=0, {G+

t ,G
−
t }∞t=0) + yw0

)
≤ inf

y>0
inf
{Dt}

sup
{G+

t ,G−
t }

(
J (y, k, s; {Dt}∞t=0, {G+

t ,G
−
t }∞t=0) + yw0

)
:= J(y, k, s), (8)

where V (w0, s, k) is the agent’s value function defined by (3). Second, we will show that the

inequality in (8) holds as equality, i.e.,

sup
{G+

t ,G−
t }

inf
{Dt}

J (y, k, s; {Dt}∞t=0, {G+
t ,G

−
t }∞t=0) = inf

{Dt}
sup

{G+
t ,G−

t }
J (y, k, s; {Dt}∞t=0, {G+

t ,G
−
t }∞t=0),

where we will denote this common value by J(y, k, s) that is convex in y and the convexity is

inherited by the construction of J in (7).

It’s worth noting that the singular controls G+
t and G−

t determine the trajectory of the num-

ber of staked tokens kt, while the control Dt ensures that the total wealth Wt remains non-

negative (i.e., satisfying the borrowing constraint). Taking this into consideration, the above

equality implies that the maximum dual value that can be achieved through staking decisions

under any strategies that adhere to the borrowing constraint is equal to the minimum dual

value imposed by the borrowing constraint, regardless of the staking strategies employed.

Now by dynamic programming principle, we first derive a Variational Inequality (VI) that

J satisfies (see (B.1) in the Appendix). Note that the VI (B.1) is three dimensional, so we use

the following transform to reduce the dimension.

Q(z) :=
J(y, k, s)

ω(ks)1−γ
with z =

y(ks)γ

ω
. (9)

Then, we can rewrite (B.1) as the following variational inequality for Q(z): for z > 0
LzQ+ ũ (z) + ω̃u(1) + ϕz = 0 if (1− ρ)z < (1− γ)Q+ γzQ′ < z and Q′ < 0,

LzQ+ ũ (z) + ω̃u(1) + ϕz ≤ 0 if (1− γ)Q+ γzQ′ = z or (1− γ)Q+ γzQ′ = (1− ρ)z,

LzQ+ ũ (z) + ω̃u(1) + ϕz ≥ 0 if Q′ = 0,

(10)

where the operator Lz is given by

Lz :=
σ2
z

2
z2

d2

dz2
+ (βz − rz)z

d

dz
− βz,

where the coefficients are defined as follows: ω̃ := (1 − ω)/ω, rz := r − (µ − δ) + σθ = δ,

βz := β − (1− γ)(µ− δ) + γ(1−γ)σ2

2 , and σz := γσ − θ.
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3.2. Solution to the Free Boundary Problem

In this section, we derive the explicit solution to the free boundary problem (10). Before it, we

introduce the following assumption to make the solution well-defined.

Assumption 1.

βz > 0 and K := rz +
βz − rz

γ
+

(γ − 1)

2γ2
σ2
z > 0.

Let n1, n2 be positive and negative roots of the following quadratic equation:

θ2

2
n2 + (βz − rz −

σ2

2
)n− βz = 0. (11)

We obtain the explicit form of Q(z) as in the following proposition. There are two cases: (i)

case for a large ρ and (ii) case for a small ρ.

Proposition 1. There exists ρ∗ > 0 such that the following hold:

(a) If ρ > ρ∗,

Q(z) = Ĉ1z
n1 + Ĉ2z

n2 +
1

K

γ

1− γ
z
− 1−γ

γ +
ω̃

βz

1

1− γ
+

ϕ

rz
z, z ∈ (ẑH , ẑL). (12)

(b) If 0 < ρ < ρ∗,

Q(z) = C1z
n1 + C2z

n2 +
1

K

γ

1− γ
z
− 1−γ

γ +
ω̃

βz

1

1− γ
+

ϕ

rz
z, z ∈ (zH , zL). (13)

Here, the coefficients C1, C2, Ĉ1, Ĉ2 and the free boundaries zH , zL ẑH , ẑL are given in the proof.

It is important to note that the size of ρ determines the boundary conditions that dictate

the agent’s choice of liquid and staked token holdings. Proposition 1 (a) and (b) provide the

solution forms for each case. To accurately describe the optimal policy, we introduce the dual

process Zt and outline its behavior in each scenario, as summarized in Corollary 1:

Zt :=
1

ω
Yt(ktSt)

γ =
y

ω
eβtHtDt(ktSt)

γ . (14)

Here Zt in (14) has a negative relationship with the wealth process. This is the reason why we

set zH < zL and ẑH < ẑL since the lower boundaries zH and ẑH imply high wealth levels, and

the upper boundaries zL and ẑL imply zero wealth.

Corollary 1. The optimal policy (D∗
t , k

∗
t ) is given as follows.

(a) Suppose ρ > ρ∗. Then, dG−
t = 0 for all t ≥ 0. Here, Dt and G+

t are adjusted so that ẑH ≤ Zt ≤
ẑL for all t ≥ 0. dk∗t = −δk∗t dt during the times when ẑH < Zt < ẑL. Zt never hits ẑL and k∗t

increases whenever Zt hits ẑH .

14



(b) Suppose 0 < ρ < ρ∗. Then, G+
t and G−

t are adjusted so that zH ≤ Zt ≤ zL for all t ≥ 0. D∗
t = 1

for all t > 0. dk∗t = −δk∗t dt during the times when zH < Zt < zL. k∗t increases (decreases)

whenever Zt hits zH (zL).

When ρ is large, that is, when the cost of unlocking the staked tokens is substantially high,

it is never optimal to unlock the staked tokens (dG−
t = 0 for all t ≥ 0). What if the token

price drops sufficiently so wealth becomes closer to zero? In this case, the staked position is

completely hedged by shorting the liquid tokens (xt < 0 so that πt = x∗t +m∗
t = 0 ) to ensure

Wt ≥ 0. This dynamic adjustment is controlled by optimal D∗
t . On the other hand, if the ratio

of wealth to the holdings of staked tokens, Wt/k
∗
t St, increases sufficiently, the agent stakes

more tokens: the additional amount of newly staked tokens is StdG+
t whenever Zt hits ẑH .

Now we consider the case where ρ is small. In this case, the agent unlocks staked tokens

whenever Zt hits zL (or the wealth process hits the zero boundaries) and increases staking

whenever Zt hits zH (or Wt/k
∗
t St becomes sufficiently high). In this case, the total holdings

of tokens πt are positive when Wt = 0, unlike the case with high ρ and the agent unlocks the

staked tokens in order to make Wt ≥ 0.

3.3. Optimal Strategy

We provide the optimal strategy for the primal problem (3). To do so, we first establish the

following duality relationship between the value function V (w0, s, k) defined in (3) and the

dual value function J(y, s, k) in (8).

Theorem 1 (Duality).

V (w0, s, k) = inf
y>0

(J(y, s, k) + yw0) . (15)

From the duality relationship (15), we obtain the following condition for optimality: for

given w0 ≥ 0, k > 0, and s > 0, there exists a unique y∗ > 0 such that y∗(ks)γ

ω ∈ (0, zL) and

w0 = −ksQ′
(
y∗(ks)γ

ω

)
. (16)

Proposition 2. The optimal strategy (c∗t , x
∗
t , k

∗
t ) is given by

c∗t =mt(Z∗
t )

− 1
γ , (17)

x∗tSt =mt

(
θ − γσ

σ
Z∗
t Q′′(Z∗

t )−Q′(Z∗
t )

)
−mt, (18)

where mt is the total value of the staked token mt := k∗t St, Zt is defined by (14), and the dynamics of k∗t
are described in Corollary 1. Then, the wealth process W c∗,x∗,k∗

t corresponding to the optimal strategy

(c∗t , x
∗
t , k

∗
t ) is given by

W c∗,x∗,k∗

t = −mtQ′(Z∗
t ). (19)
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Note that there is the one-to-one correspondence between the dual variable y and wealth

Wt by as Q′(z) is strictly decreasing in z ∈ (zH , zL). From Theorem 1 and Proposition 2, we can

derive the share of the optimal staking boundary. More precisely, for the current staking level k

and the price s (thus the total value of the staked tokens is m = ks), the optimal wealth bound-

ary WH(m) at which to increase staking and the ratio of maximum wealth to total staking Wm

are defined respectively, as follows:

WH(m) := −mQ′(zH) or WH :=
WH(m)

m
= −Q′(zH). (20)

We can rewrite the optimal strategies by using the closed-form solution for Q(Zt).

Corollary 2. The optimal strategy (c∗t , x
∗
t , k

∗
t ) is rewritten as

c∗t = K

(
W c∗,x∗,k∗

t +
ϕ

rz
mt

)
+Kmt

(
n1C1(Z∗

t )
n1−1 + n2C2(Z∗

t )
n2−1

)
x∗tSt +mt =

θ

γσ

(
W c∗,x∗,k∗

t +
ϕmt

rz

)
︸ ︷︷ ︸

(i)

− ϕmt

rz︸︷︷︸
(ii)

+
θ − γσ

γσ

(
(1− γ + γn1)n1C1(Z∗

t )
n1−1 + (1− γ + γn2)C2(Z∗

t )
n2−1

)
︸ ︷︷ ︸

(iii)

, (21)

where mt,Z∗
t , and k∗ are same in Proposition 2.

Corollary 2 clarifies the impact of the staking mechanism on the optimal consumption and

portfolio decisions by identifying the similarity and thus eventually the difference between

standard consumption and portfolio choice problems and the problem with staking. First, re-

garding the similar feature, given that ϕmt is instantaneous income and thus Wt + ϕmt/rz is

interpreted as human wealth, note that the agent’s total token holdings (the left-hand side of

(21)) consist of three components in the following order: (i) the myopic demand, (ii) the hedg-

ing demand against stochastic income ϕmt, and (iii) the liquidity hedging demand against the

borrowing constraints. This decomposition is exactly the same as that resulted from the stan-

dard consumption and portfolio selection problem with stochastic income and the borrowing

constraints (e.g., Ahn et al. (2019)) as ϕmt is income from staking.

Second, regarding the specific feature of our case, it is important to note that given that the

total token holdings (xtSt +mt) consist of the three components, the cryptocurrency investor

needs to decide how to allocate between the liquidity token holdings (xtSt) and the staking

position (mt). The optimal allocation rule between the two positions is specified by the inac-

tion interval (zH , zL) and the evolution dynamics of kt and Dt described in Proposition 1 and

Corollary 1, respectively.
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4. Implication

In this section, we investigate the implications of the model. First, we study the impact of the

key parameters on the inaction interval (Section 4.1). Then, we investigate the optimal policies

(Section 4.2), risk-taking dynamics (Section 4.3), and the impact of the cost and the reward on

staking ratios (Section 4.4).

Before delving into the detailed explanation of the results, it is essential to acknowledge

that the parameter values used in the figures and tables of this section have been chosen with

a conservative approach. It should be noted that cryptocurrency returns and their volatility

typically exhibit much higher values than those presented here. For instance, taking the ex-

ample of bitcoin’s return and volatility between September 3, 2013, and March 30, 2023, they

amount to 38.5% and 61.52%, respectively (source: Choi et al. (2023b)). It is important to rec-

ognize that these numbers can significantly vary based on the selected sample period. Similar

fluctuations can be observed for other tokens employing a staking mechanism. In this sec-

tion, we cautiously demonstrate some quantitative implications by considering conservative

estimates for the returns and return volatility.
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Figure 1: The parameter set is given by γ = 2, β = 0.07, µ = 0.08, σ = 0.25, r = 0.03, ϕ = 0.01, ρ = 0.02, ω = 0.5

4.1. Inaction Interval

What is the frequency at which the agent adjusts their staking position? Proposition 3 offers

comparative static results regarding the size of the inaction region in relation to ϕ, ρ, and ω.

These results shed light on the impact of these parameters on how the agent manages the

staking position.

Proposition 3. The following hold:

(a) The inaction interval decreases with ϕ: ∂WH
∂ϕ < 0.
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(b) If 0 < ρ < ρ∗, the inaction interval increases with ρ: ∂WH
∂ρ > 0.

(c) The inaction region increases with ω: ∂WH
∂ω > 0.

Based on Proposition 3, we can infer that the agent will adjust their staking position more

frequently under the following conditions: (a) as ϕ increases, (b) as ρ decreases, or (c) as ω

decreases. Note regarding the condition of Proposition (b) 3 that if ρ > ρ∗, the inaction interval

is independent of ρ as the agent never liquidates the staking position.

Figure 1 illustrates the behavior of WH with respect to these parameters: panel (a) shows

the relationship with ϕ, panel (b) with ρ, and panel (c) with ω. The results regarding (a) and (b)

come out as easily expected. More precisely, while a higher staking reward encourages greater

token staking (Proposition 3(a)), a lower cost leads to more frequent adjustments in the staking

position (Proposition 3(b)).

What about the trading frequency of active DAO participants? The agent will adjust their

staking position more frequently as ω decreases. Figure 1 (c) illustrates the behavior of WH

with respect to ω. Interestingly, this finding reveals that active participants change their staked

position more frequently than general investors, which may seem counter-intuitive at first.

One might expect active DAO participants to be long-term stakers. However, active partici-

pants derive higher utility gains from staking, which motivates them to increase the number of

staked tokens even in response to small increases in wealth. Therefore, the trading frequency

of active participants is higher than that of general agents. We also empirically verify this

prediction (see Appendix A).

0 0.5 1 1.5 2 2.5 3 3.5 4
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Consumption to wealth ratio

(a) ct
Wt

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

5

6
Total token holdings to staking ratio

(b) πt
kt

Figure 2: Consumption and liquid token holdings in the inaction interval with different ϕ’s. The parameter set is

given by γ = 2, β = 0.07, µ = 0.08, σ = 0.25, r = 0.03, ρ = 0.02, δ = 0.03, ω = 0.5
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Figure 3: Consumption and liquid token holdings in the inaction interval with different ρ’s. The parameter set is

given by γ = 2, β = 0.07, µ = 0.08, σ = 0.25, r = 0.03, ϕ = 0.02, δ = 0.03, ω = 0.5

4.2. Optimal Consumption and Risk-taking

Figures 2 and 3 provide visual representations of the optimal policies in our model. Specifi-

cally, Figure 2(a) displays the optimal consumption-to-wealth ratio, c∗t
Wt

, and Figure 2(b) illus-

trates the ratio of total token holdings to staked token holdings, πtSt
mt

= πt
kt

, within the inaction

interval.

From Figures 2(a) and 3(a), we observe that the ratio of consumption to wealth decreases

as wealth increases, while the absolute amount of consumption increases with wealth. This

finding can be directly inferred from equations (17) and (28). In contrast, as wealth increases,

the liquid token holdings and thus the total token holdings increase (see Figures 2(b) and

3(b)), which results from the fact that the liquidity hedging demand against the borrowing

constraints is greatly relaxed (Corollary 2). This implies that as the agent’s wealth grows, they

allocate more funds towards liquid token holdings rather than increasing consumption. As a

result, the ratio of consumption to wealth decreases in this scenario. In other words, when the

token price is increasing (decreasing), the agent chooses to take more (less) risk.

4.3. Risk-taking Dynamics

Based on the result in Section 4.2, we conduct further investigation into the quantitative im-

pact of liquidity demand over time. Prior to examining the time-series analysis on risky token

investment, it is worth noting the significant fluctuations in the ratio of liquidity token hold-

ings to staked tokens, represented as xt
kt

= πt
kt

− 1, within the inaction interval. For instance, in

Figure 2(b), when ϕ = 0.01, πt
kt

varies widely, ranging from approximately -2 to 5. This example
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suggests that the agent’s token holdings can differ substantially between good and bad times

in the cryptocurrency market.
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Figure 4: Sample path of the cryptocurrency price St (red dotted lines) and the corresponding time series of
πtSt

Wt+ϕmt/rz
(black solid lines). The parameter set is given by γ = 2, β = 0.07, µ = 0.15, σ = 0.2, r = 0.03, ϕ =

0.02, δ = 0.03, ω = 0.2, and ρ = 0.05.

With the above observation in mind, let us consider the dynamics of the token holdings.

Figure 4 displays a sample path of the cryptocurrency price St along with the corresponding

time series of the ratio of the total token investment to human wealth, expressed as πtSt
Wt+ϕmt/rz

.

Recalling the context of the standard Merton model, this ratio is constant and independent

of the price only if the agent invests in a token without a staking mechanism and derives no

utility from holding the token: ω = 1 and ϕ = 0. However, other than this special case, there

is a strong positive correlation between the ratio and the cryptocurrency price in our model.

For example, as shown in Figure 4, this ratio is 22.3% higher (reaching 0.685) during favorable

periods compared to unfavorable periods (as low as 0.560).

The strong positive correlation highlights the role of the staking mechanism. To make it

easier to understand, let us consider the scenario where the price is increasing (decreasing).

In this case, both wealth and the ratio experience an increase (decrease). Consequently, the

absolute difference in token investments between favorable and unfavorable times is signifi-

cantly higher than that between the maximum and minimum ratios. For instance, in Figure

4 the total token investment πtSt = 1.4668 at t = 4 exceeds πtSt = 0.7223 at t = 6 by over

100%, while the ratio at t = 4 is only 22.3% higher that the ratio at t = 6. This dynamic be-

havior is fairly relevant to stakers’ investment patterns. To elaborate further, let’s consider two

distinct investors of the cryptocurrency with a staking mechanism, one being a staker and the

other a non-staker. Non-staking is not considered optimal due to the presence of a staking
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max min (max-min)/min (%)

ϕ

0.010 0.8418 0.7618 10.49

0.015 0.6311 0.5033 25.39

0.020 0.4966 0.3775 31.56

0.025 0.4060 0.3039 33.62

0.030 0.3422 0.2559 33.70

ρ

0.05 0.4966 0.3775 31.56

0.06 0.5128 0.3861 32.83

0.07 0.5273 0.3942 33.76

0.08 0.5403 0.4019 34.43

0.09 0.5521 0.4093 34.88

ω

0.10 0.4966 0.3775 31.56

0.15 0.5945 0.4736 25.54

0.20 0.6754 0.5608 20.43

0.25 0.7451 0.6490 14.81

0.30 0.8022 0.7446 7.72

Table 1: The parameter set is given by γ = 2, β = 0.07, µ = 0.15, σ = 0.2, r = 0.03, ϕ = 0.02, δ =

0.03, ω = 0.1, and ρ = 0.05.

reward. In our context, a non-staker refers to an investor who cannot stake the tokens for any

reason. For instance, this investor exclusively trades the cryptocurrency on a centralized ex-

change that does not offer staking services for the token. In this case, our result implies that

the staker’s token holdings are notably higher in good times and relatively lower during bad

times compared to the non-staker’s holdings.

Table 1 shows the maximum and minimum values of the ratio of the total token investment

to human wealth and the percentage difference between the maximum and minimum ratios for

each value of (a) ω, (b) ϕ, and (c) ρ. As shown in the table, it is common that the ratio fluctuates

more than 20-30%. The maximum and minimum ratios are generally monotonic in ω, ϕ, and ρ,

while their percentage difference is not monotonic. In summary, Table 1 demonstrates that the

reasonable values of (ω, ϕ, ρ) can generate similar or even larger fluctuations in the investment

ratio as in Figure 4.

4.4. Effects of Cost and Staking Reward

First, Figure 5 provides insights into the impact of ρ on the staking ratio when the wealth-to-

staking ratio is held constant. Irrespective of the level of the wealth-to-staking ratio and the
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Figure 5: Effects of the lockup cost (ρ) on staking ratio (kt/(xt + xt)). The parameter set is given by γ = 2, β =

0.07, µ = 0.08, σ = 0.25, r = 0.03, δ = 0.03, ω = 0.5.

staking reward, it is observed that the staking ratio consistently increases with the locking cost.

This implies that as the cost of unlocking staked tokens increases, the agent tends to allocate a

larger portion of their tokens to staking.

Next, we analyze the impact of the staking reward ϕ on the consumption to wealth ratio.

Recall that staking more tokens or unlocking staked tokens only occurs when the wealth-to-

staking ratio, Wt/mt, reaches the upper or lower boundary.

Figure 6 depicts the effects of the staking reward on the consumption to wealth ratio, con-

sidering two scenarios: fixing Wt/mt = 0.1 in the left panel and Wt/mt = 1.5 in the right panel.

In the left panel, the proportion of staked tokens relative to the total token holdings is higher

compared to the right panel.
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Figure 6: Effect of staking reward (ϕ) on consumption to wealth ratio. The parameter set is given by γ = 2, β =

0.07, µ = 0.08, σ = 0.25, r = 0.03, δ = 0.03, ω = 0.5

The impact of the staking reward on the consumption to wealth ratio is twofold. First,
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the consumption to wealth ratio increases with a higher staking reward. Second, when the

proportion of staked tokens is higher, the change in the consumption to wealth ratio becomes

more sensitive to variations in the staking reward. This can be observed by comparing the

slopes of the graphs in the left and right panels of Figure 6. The larger scale of the y-axis in

the right panel indicates a more pronounced increase in consumption as the staking reward ϕ

rises.

On the other hand, the cost ρ has a negative effect on consumption. As the cost of unlocking

staked tokens increases, the consumption level decreases. This is evident when comparing the

graphs with different values of ρ in Figure 6 (ρ = 0.01, 0.02, and 0.03, respectively). The reason

behind this result is that a higher cost reduces the net return from investments, leading to a

decrease in consumption.
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Figure 7: Effect of ϕ on the staking ratio, kt/(xt + kt), when Wt/mt = 1.8 (fixed). The parameter set is given by

γ = 2, β = 0.07, µ = 0.08, σ = 0.25, r = 0.03, δ = 0.03
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Figure 8: Effect of ϕ on liquid token to wealth ratio, xtSt/Wt, when Wt/mt = 1.8 (fixed). The parameter set is

given by γ = 2, β = 0.07, µ = 0.08, σ = 0.25, r = 0.03, δ = 0.03

What about the impact of the staking reward on the staking ratio, kt
kt+xt

? One might initially

expect that the staking ratio increases as the reward increases. However, this is only true for

general investors who do not derive significant utility from staking tokens. As shown in Figure
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7(a) with ω = 0.9, the agent increases the staking ratio to maximize the staking reward as the

reward ϕ increases. However, for active investors with small ω who gain substantial utility

from staking tokens, the relationship is reversed. As depicted in Figure 7(c), the staking ratio

actually decreases with increasing staking reward.
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Figure 9: The ratio of marginal utilities from consumption and staking. The parameter set is given by γ = 2, β =

0.07, µ = 0.08, σ = 0.25, r = 0.03, ρ = 0.02, δ = 0.03

To understand the above result, it is important to recognize that the staking reward rep-

resents an additional income stream, effectively increasing the total wealth of the agent. As

a result of this income effect, the agent optimally increases their total token holdings, encom-

passing both xt and kt, as the staking reward ϕ increases. Therefore, the reason why the staking

ratio increases (decreases) with ϕ when ω is small (large) is due to the differential impact on

the liquid token holdings and stake token holdings. Specifically, when ω is small, the increase

in liquid token holdings surpasses the increase in stake token holdings as ϕ increases. In con-

trast, when ω is large, the increase in stake token holdings outweighs the increase in liquid

token holdings as ϕ increases.

With the above income effect in mind, we can analyze the marginal rate of substitution

(MRS) between staking and consumption. The MRS represents the ratio of the marginal utility

from staking to the marginal utility from consumption:

MRSkc :=
(1− ω)u′(kSt)

ωu′(ct)
.

As observed in Figure 9 for different categories of token holders, the marginal rate of substi-

tution (MRSkc) is higher for active participants of the DAO compared to general investors:

MRSkc decreases as ω decreases. This indicates that token holders with smaller ω experience

a relatively larger utility loss when unlocking staked tokens in the event of adverse shocks.
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As risk-averse agents, they respond by reducing their staking ratio while increasing their total

token holdings due to the income effect.

5. Extension: Case with an Additional Risky Asset

Previously, stock markets and cryptocurrency markets were regarded as separate entities in

the sense that the majority of stock investors did not participate in cryptocurrency markets

and vice versa. However, with the increasing popularity of cryptocurrency investing, there

has been a growing trend of investors engaging in both markets. To account for this evolving

landscape, we extend our model in this section to incorporate an additional risky asset, such

as stocks.

In this section, we first set up an extended model. After presenting the solution analysis,

we provide new implications from the extended model. Again it is important to note that a key

distinction between the two markets is the absence of staking in the stock market. Therefore,

the additional risky asset can encompass cryptocurrencies like Bitcoin, Dogecoin, and others,

as they lack a staking mechanism.

5.1. Model and Solution

Assume that Pt represents the (cum-dividend) price of the stock or the price of the non-staking

cryptocurrency token:

dPt/Pt = µpdt+ σp(ϱdBt +
√

1− ϱ2dΞt),

where Ξt is another standard Brownian motion which is independent of Bt, and ϱ ∈ (−1, 1)

is the correlation between the mean returns of the staking asset St and non-staking asset Pt.

Then, the wealth dynamics in (2) are rewritten as

dWt =[rWt + (µ− r)πtSt + (µp − µ)πp,t + ϕktSt − ct]dt

−StdG+
t + (1− ρ)StdG−

t + σπtStdBt + σpπp,tPt

(
ϱdBt +

√
1− ϱ2dΞt

)
.

(22)

In order to avoid introducing new notations and to precisely describe the optimal strategy

of the extended model, we need to redefine the coefficients rz , βz , and σz as follows:

rz = δ, βz = β − (1− γ)(µ− δ) +
γ(1− γ)σ2

2
, and σz =

√
(γσ − θ)2 + θ2p, (23)

where θp :=
−σpϱ(µ− r) + σ(µp − r)

σσp
√
1− ϱ2

. In addition, Zt is redefined as

Zt =
y

ω
e(β−r− 1

2
(θ+θ2p))dt−θBt−θpΞtDt(ktSt)

γ . (24)
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Likewise, all the other parameters (e.g., zH , zL, ẑH , ẑL) are also redefined in accordance with

(23). Then, we have the following proposition valid under these redefined coefficients and

Zt-process.

Proposition 4. The optimal strategy (c∗t , x
∗
t , k

∗
t , π

∗
p,t) is given by

c∗t =mt(Z∗
t )

− 1
γ , (25)

x∗tSt =mt

(
θσp
√

1− ϱ2 − θpσpϱ− γσσp
√

1− ϱ2

σσp
√
1− ϱ2

Z∗
t Q′′(Z∗

t )−Q′(Z∗
t )

)
−mt, (26)

π∗
p,tPt =mt

θp

σp
√

1− ϱ2
Z∗
t Q′′(Z∗

t ) (27)

where mt := k∗t St and Z∗
t is given by (24). The dynamics of k∗t are the same as what is described in

Corollary 1 with redefined coefficients (23) and Z∗
t . Then, the wealth process W

c∗,x∗
t ,k

∗
t ,π

∗
p,t

t correspond-

ing to the optimal strategy (c∗, x∗, k∗t , π
∗
p,t) is given by

W
c∗,x∗,k∗,π∗

p,t

t = −mtQ′(Z∗
t ). (28)
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Figure 10: πt
kt

with the stock (red dotted line) versus without the stock (blue line). The parameters are given by

γ = 3, β = 0.07, µ = 0.15, µp = 0.07, σ = 0.4, σp = 0.2, r = 0.02, ϕ = 0.025, ρ = 0.1, and ϱ = 0.

5.2. Implications

Here we discuss the new implications of the extended model based on Proposition 4.

Optimal Staking Ratios: What is the difference in optimal staking ratios between when the

agent participates in both markets and when the agent only participates in the cryptocurrency

market? Figure 10 illustrates the comparison of πt/kt (the inverse of the staking ratio) in both

scenarios. It is important to note that when an investor participates in both markets, both
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the staking amount (kt) and the total cryptocurrency investment (πt = kt + xt) decrease com-

pared to when the investor solely participates in the cryptocurrency market. This result is in

accordance with the standard diversification argument.

Figure 10(a) demonstrates that, in this case, the investor reduces their total cryptocurrency

holdings more than the staking amount when ω is small (active participants), resulting in an

increase in the staking ratio kt/πt (equivalently decrease in πt/kt in the figure). Figure 10(c)

illustrates the situation in which the staking ratio decreases when ω is large (general agents).

If ω is intermediate, there is a crossover depending on financial wealth (Figure 10(b)). In this

case, the staking ratio increases (decreases) when wealth is large (small). That is, the wealth

effect dominates the liquidity hedge need as wealth increases for the intermediate level of ω.

Case with the Additional Asset being a Stock: Next, we explore the effects of the correla-

tion (ϱ) between the stock market and the cryptocurrency market on asset holding positions. It

is important to note that as long as there is no perfect correlation between the two markets, the

agent allocates a substantial (nontrivial) amount to the staking position. Thus, we examine the

liquid cryptocurrency position and the stock position, both normalized by the staking amount.

Specifically, we consider the following three ratios:

(a) Crypto holdings/Staking (i.e., πtSt
mt

)

(b) Stock holdings/Staking (i.e., πp,tSt

mt
)

(c) Total asset holdings/Staking (i.e., πtSt+πp,tPt

mt
).

These ratios provide insights into the relative proportions of cryptocurrency holdings, stock

holdings, and total asset holdings compared to the staking amount.
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Figure 11: Effect of ϱ when Wt/mt = 2.0 (fixed): the three ratios as a function of ϱ. The other parameters are

given by γ = 2, β = 0.07, µ = 0.15, µp = 0.7, σ = 0.4, σp = 0.2, r = 0.03, δ = 0.03

27



Figure 11 depicts the three aforementioned ratios with respect to the correlation (ϱ) between

the two markets. Ratio (a) exhibits a U-shaped pattern in relation to ϱ, while ratio (b) generally

decreases as ϱ increases. This implies that when the two markets demonstrate negative corre-

lations, both crypto and stock holdings decline with increasing ϱ. On the other hand, when the

two markets display positive correlations, crypto holdings increase, while stock holdings de-

crease with ϱ. In this case, as ϱ increases and becomes positive, the decrease in stock holdings

outweighs the increase in crypto holdings. Consequently, as observed in Figure 11(c), the total

asset holdings decrease with ϱ.

To summarize, Given that the agent has significant crypto holdings in staking, the total

asset holdings (i.e., liquid crypto holdings and stock holdings) diminish as the correlation

between the two markets increases. This result is somewhat intuitive given that the Sharpe

ratio of the cryptocurrency market is higher than that of the stock market (while the former is

dramatically changing over time).

In Figure 11, we take the return and volatility of the stock as 7% and 20%, respectively,

which are representative values for a typical U.S. stock market, such as the S&P 500 or Nas-

daq. Moreover, to highlight the typical difference between the two markets, we assume that

the return and volatility of the cryptocurrency asset are approximately twice as high as those

of the stock. It is worth noting that common cryptocurrencies like Bitcoin and Ethereum of-

ten exhibit much higher returns and volatilities, although these values can vary significantly

depending on the sample period. Importantly, the results discussed in the figure are further

strengthened when we employ higher return and volatility values for the cryptocurrency asset.

Case with the Additional Asset being a Non-staking Crypto: In the case where the agent

solely invests in the crypto market, which consists of two different tokens–one being a staking

cryptocurrency and the other a non-staking cryptocurrency–we can consider the correlation ϱ

between the two. Similar to the previous case, we examine the liquid staking crypto position

and the non-staking crypto position, both normalized by the amount of staking. Specifically,

we consider the following ratios:

(a) Staking Crypto holdings/Staking (i.e., πtSt
mt

)

(b) Non-staking Crypto holdings/Staking (i.e., πp,tSt

mt
)

(c) Total asset holdings/Staking (i.e., πtSt+πp,tPt

mt
)

The implications in this case closely resemble those in the scenario where the additional

risky asset is a stock, as shown in Figure 12. The main difference only comes from the return

structure of the additional risky asset. In Figure 12, we assume that the return and volatility of
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Figure 12: Effect of ϱ when Wt/mt = 2.0 (fixed): the three ratios as a function of ϱ. The other parameters are

given by γ = 2, β = 0.07, µ = 0.15, µp = 0.15, σ = 0.4, σp = 0.4, r = 0.03, δ = 0.03

the additional asset are the same as those of the staking token, which is based on the observa-

tion that many cryptocurrencies exhibit a fairly similar risk-return profile. By assuming similar

risk-return characteristics for both staking and non-staking cryptocurrencies, the findings from

Figure 12 align with those from Figure 11. This similarity suggests that the correlations and

their effects on the asset holdings remain consistent across different scenarios, regardless of

whether the additional asset is a stock or a non-staking cryptocurrency.

With the given parameterization, a noteworthy finding in this case is that the non-staking

cryptocurrency position becomes significantly smaller when the correlation ϱ is relatively high.

This finding holds largely true for higher values of the return and volatility of the additional

non-staking cryptocurrency. This robust result carries interesting implications. Considering

that the returns of the majority of cryptocurrencies exhibit a strong correlation with Bitcoin,

it suggests that an agent who stakes a particular token has a tendency to hold primarily the

corresponding tokens rather than other non-staking cryptocurrencies. This observation high-

lights the importance of the correlation between different cryptocurrencies and its influence

on an investor’s asset allocation decisions.

6. Conclusion

In this paper, we have addressed the optimal staking decision problem faced by cryptocur-

rency investors. Our model captures the trade-off between the utility gained from staking

tokens and the costs or frictions associated with unlocking them. Through the duality relation-

ship, we derived a variational inequality problem with two singular controls. Our analysis

revealed that the optimal staking policy involves an inaction interval for the wealth-to-staking

ratio, where the investor refrains from changing their staking position. Additionally, we ex-
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plored various implications of the staking reward and costs for optimal policies. We also per-

form simple empirical tests to show that active investors trade more frequently. Finally, we

extend the model to the case in which investors participate in both the cryptocurrency market

with staking and the stock market.

Our model abstracts from certain aspects of reality, such as time-varying returns or jump

shocks in cryptocurrency prices. Investigating the effects of these factors on the liquid and

staking positions of cryptocurrency investors would be an intriguing avenue for future re-

search.
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Appendix

A. Simple Empirical Analysis

We conduct simple empirical tests to examine our theoretical predictions. However, it is im-

portant to note the following caveat before presenting the results: cryptocurrency investors

often have multiple wallet addresses serving different purposes. Some of these wallets may

be on-chain, while others may be held in centralized exchanges. Consequently, accurately

identifying all the wallet addresses and thus the total portfolios held by a single agent poses

a considerable challenge. Due to this issue, we include the empirical results in the appendix.

Nonetheless, we proceed to carefully argue that the presented empirical findings align with

our theoretical prediction.

A.1. Data Description

Table 2: Summary statistics
quantity is the token balance of an individual token holder (a wallet address) and trx n is the total number of

transactions of the token executed by the wallet address. We collect the on-chain data from https://etherscan.io.

For each token, we choose the 1000 largest token wallet addresses and their transaction numbers from the genesis

block time to June 21, 2023. We put the total transaction number as 10000 to reduce the effect of sample bias if the

number is greater than 10000.

mean sd min median max

AAVE

quantity 15033.54 129864.60 327.67 975.69 3302672

trx n 354.63 1535.83 1 5 10000

LIDO

quantity 982277.50 5709589 15805.87 61716.97 1.10e+08

trx n 219.30 1239.08 1 4 10000

Maker

quantity 948.40 7026.36 20.23 74.97 190987.1

trx n 326.24 1468.74 1 5 10000

We use the transaction data of three DAO Tokens (Aave, Lido Dao, and Maker) obtained

from Etherscan (https://etherscan.io/). We collected the trading history of the top 1000

wallet addresses for each DAO’s token holders from the genesis block date to June 20, 2023. It

is important to note that the dollar value of the tokens held by wallet addresses below the top

33

https://etherscan.io
https://etherscan.io/


1000 is at most 1000 USD, indicating that they are unlikely to be active DAO investors.

Table 2 presents the summary statistics for each coin. The quantity of each token represents

the total number of tokens in each wallet address, while trx n indicates the total number of

transactions executed by each wallet address during the specified period. The first row dis-

plays the mean, standard deviation, minimum, median, and maximum values for quantity.

Similarly, the second row provides the same information for trx n. For instance, among the

1000 wallet addresses of Aave, the mean value for the total number of transactions is 15,033.54.

Table 3: Regression results

(1) AAVE (2) AAVE (3) LIDO (4) LIDO (5) Maker (6) Maker

total w/o protocols total w/o protocols total w/o protocols

log(quantity) 345.03∗∗∗ 56.85∗∗∗ 109.70∗∗∗ 46.07∗∗∗ 198.88∗∗∗ 40.07∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -2180.37∗∗∗ -314.72∗∗ -1043.31∗∗∗ -473.31∗∗∗ -612.44∗∗∗ -117.48∗∗

(0.000) (0.002) (0.000) (0.000) (0.000) (0.010)

Obs. 1000 927 1000 931 1000 922

R2 0.11 0.02 0.02 0.02 0.04 0.02

p-values in parentheses
∗ (p < 0.05) ,∗∗ (p < 0.01) ,∗∗∗ (p < 0.001)

A.2. Analysis

We utilize this dataset to test one of our key findings: the reduction of the inaction interval as

ω increases. Based on this, we propose the following empirical prediction: individuals who

are more actively involved in the DAO tend to engage in more frequent trading. We posit that

a higher inclination to participate in the DAO correlates with larger holdings of governance

tokens. Our regression model is

trx n = α+ β × log(quantity) + ϵ, (A.1)

where α and β are the regression coefficients and ϵ represents an additive error term. Note that

although we use the logarithmic transformation for trx n, using the absolute value instead

does not significantly alter the results.

Table 3 presents the results of a simple regression analysis that examines the impact of

token holdings on trading frequency. The odd columns display the results obtained using the

entire sample, including wallet addresses from centralized exchanges and other Defi protocols.

It should be noted that the wallet addresses of these protocols may or may not be regarded as
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active participants. To ensure the robustness of our findings, we conduct a separate regression

analysis excluding these protocols, and the results are displayed in the even columns for each

token. Notably, significant results were observed in both cases.

B. Proofs

B.1. Variational Inequality for J

By applying the dynamic programming principle, we derive the following variational inequal-

ity for J :

Ly,s,kJ + ωũ
( y
ω

)
+ (1− ω)u(ks) + ϕysk = 0 if (1− ρ)ys < ∂kJ < ys and ∂yJ < 0,

Ly,s,kJ + ωũ
( y
ω

)
+ (1− ω)u(ks) + ϕysk ≤ 0 if ∂kJ = ys or ∂kJ = (1− ρ)ys,

Ly,s,kJ + ωũ
( y
ω

)
+ (1− ω)u(ks) + ϕysk ≥ 0 if ∂yJ = 0,

(B.1)

where Ly,s,k is given by

Ly,s,k :=
θ2

2
y2∂yy +

σ2

2
s2∂ss − θσ∂sy + (β − r)y∂y + µs∂y − δk∂k − β.

Here, ∂i and ∂ij represent the first and second partial derivatives with respect to i, j ∈ {y, s, k}.

Note that under transform (9), the conditions ∂kJ = 0 and ∂yJ = 0 are equivalent to (1 −
γ)Q+ γzQ′ = 0 and Q′ = 0, respectively.

B.2. Proof of Proposition 1

We first consider the case ω = 1 for simplicity. In this case, we need the assumption ϕ > rz .

In this case, we can rewrite the variational inequality (10) for Q as follows:
LzQ+ ũ (z) + ϕz = 0 if (1− ρ)z < (1− γ)Q+ γzQ′ < z and Q′ < 0,

LzQ+ ũ (z) + ϕz ≤ 0 if (1− γ)Q+ γzQ′ = z or (1− γ)Q+ γzQ′ = (1− ρ)z,

LzQ+ ũ (z) + ϕz ≥ 0 if Q′ = 0.

(B.2)

We suppose that there exists the critical level ρ∗ > 0 such that for 0 < ρ < ρ∗, we can find a

convex function Q(z) satisfying the following free boundary problem with zL and zH :
LzQ+ ũ(z) + ϕz = 0 for zH < z < zL,

(1− γ)Q(zH) + γzHQ′(zH) = zH , Q′(zH) + γzHQ′′(zH) = 1,

(1− γ)Q(zL) + γzLQ′(zL) = (1− ρ)zL, Q′(zL) = 0.

(B.3)
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For zH < z < zL, we can put a general solution of Q(z) by

Q(z) = C1z
n1 + C2z

n2 +
1

K

γ

1− γ
z
− 1−γ

γ +
ϕz

rz
. (B.4)

Since

(1− γ)Q(z) + γzQ′(z) = (1− γ + γn1)C1z
n1 + (1− γ + γn2)C2z

n2 +
ϕz

rz
,

we have

C1 =− 1

(1− γ + γn1)

(n2 − 1)

(n2 − n1)

(
ϕ

rz
− 1

)
z1−n1
H < 0,

C2 =− 1

(1− γ + γn2)

(n1 − 1)

(n1 − n2)

(
ϕ

rz
− 1

)
z1−n2
H > 0.

(B.5)

It follows from (1− γ)Q(zL) + γzQ′(zL) = (1− ρ)zL that

0 =
n2 − 1

n1 − n2
ξn1−1 +

n1 − 1

n2 − n1
ξn2−1 + 1 +

rzρ

ϕ− rz
, (B.6)

where

ξ :=
zH
zL

> 1. (B.7)

Lemma 1. There exists a unique ξ > 1 such that

0 = ϑ(ξ) :=
n2 − 1

n1 − n2
ξn1−1 +

n1 − 1

n2 − n1
ξn2−1 +

ϕ− rz(1− ρ)

ϕ− rz
. (B.8)

Proof. Note that

ϑ(1) =
ρ

ϕ− rz
> 0 and ϑ(∞) = −∞. (B.9)

Since for ξ > 1

ϑ′(ξ) =
(n1 − 1)(n2 − 1)

(n1 − n2)
ξn2−2

(
ξn1−n2 − 1

)
< 0, (B.10)

we can conclude that there exists a unique ξ > 1 satisfying ϑ(ξ) = 0.

Since

Q′(zL) = 0 or n1C1z
n1−1
L + n2C2z

n2−1
L − 1

K
z
− 1

γ

L +
ϕ

rz
= 0, (B.11)

we have

1

K
z
− 1

γ

L =n1C1z
n1−1
L + n2C2z

n2−1
L +

ϕ

rz

=−
(
ϕ

rz
− 1

)(
ξn1−1

(1− γ + γn1)

n1(n2 − 1)

(n2 − n1)
+

ξn2−1

(1− γ + γn2)

n2(n1 − 1)

(n1 − n2)

)
+

ϕ

rz
.

(B.12)

Let us denote ϱ(ξ) by

ϱ(ξ) :=
n1(n2 − 1)

(n1 − n2)
ξn1−1 − n2(n1 − 1)

n1 − n2
ξn2−1 +

ϕ

ϕ− rz
. (B.13)
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By almost similar argument in the proof of Lemma 1, there exist a unique ξ̄ > 1 such that

ϱ(ξ̄) = 0. Then, we can set ρ∗ by

ρ∗ := −ϕ− rz
rz

(
n2 − 1

n1 − n2
ξ̄n1−1 +

n1 − 1

n2 − n1
ξ̄n2−1 + 1

)
. (B.14)

It is easy to check that

0 < ρ∗ < 1

and

0 < ξ < ξ̄ for 0 < ρ < ρ∗. (B.15)

Lemma 2. Q(z) in (B.4) is strictly convex in z ∈ (zH , zL) if and only if 0 < ρ < ρ∗.

Proof. Let us denote φ(z) by

φ(z) := zQ′′(z) = n1(n1 − 1)C1z
n1−1 + n2(n2 − 1)C2z

n2−1 +
1

γK
z
− 1

γ . (B.16)

Then, it follows from C1 < 0 and C2 > 0 that

φ′(z) = n1(n1 − 1)2C1z
n1−2 + n2(n2 − 1)2C2z

m2−1 − 1

γ2
z
− 1

γ
−1

< 0. (B.17)

On the other hand, it follows from (B.12) that

φ(zL) =n1(n1 − 1)C1z
n1−1
L + n2(n2 − 1)C2z

n2−1
L +

1

γK
z
− 1

γ

L

=n1

(
n1 − 1 +

1

γ

)
C1z

n1−1
L + n2

(
n2 − 1 +

1

γ

)
C2z

n2−1
L +

1

γ

ϕ

rz

=
1

γ

(
n1(n2 − 1)

n1 − n2

(
ϕ

rz
− 1

)
ξn1−1 − n2(n1 − 1)

n1 − n2

(
ϕ

rz
− 1

)
ξn2−1

)
+

1

γ

ϕ

rz
.

(B.18)

Since

0 =
n2 − 1

n1 − n2
ξn1−1 +

n1 − 1

n2 − n1
ξn2−1 +

ϕ− rz(1− ρ)

ϕ− rz
,

we can deduce that

dξ

dρ
= − 1

ϕ− rz

n1 − n2

(n1 − 1)(n2 − 1)

1

ξn1−2(1− ξn2−n1)
> 0. (B.19)

This leads that

dφ(zL)

dρ
=

(
ϕ

rz
− 1

)
(n1 − 1)(n2 − 1)

n1 − n2

ξn1−2

γ

(
n1 − n2ξ

n2−n1
) dξ
dρ

< 0. (B.20)

When ρ = ρ∗, it follows from the definition of ρ∗ that

φ(zL) = 0. (B.21)

Hence, we can conclude that Q(z) is strictly convex in z ∈ (zH , zL) if and only if 0 < ρ < ρ∗.
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Lemma 3. For 0 < ρ < ρ∗, zL given in (B.12) is a positive.

Proof. Define the function ζ(ξ) by the right-hand side of the equation (B.12), i.e.,

ζ(ξ) = −
(
ϕ

rz
− 1

)(
ξn1−1

(1− γ + γn1)

n1(n2 − 1)

(n2 − n1)
+

ξn2−1

(1− γ + γn2)

n2(n1 − 1)

(n1 − n2)

)
+

ϕ

rz
. (B.22)

Sine ξ is independent of γ > 0, we have

dζ(ξ)

dγ
=

(
ϕ

rz
− 1

)(
ξ1−n1

(1− γ + γn1)2
n1(n2 − 1)(n1 − 1)

(n2 − n1)
+

ξn2−1

(1− γ + γn2)2
n2(n1 − 1)(n2 − 1)

(n1 − n2)

)
> 0.

(B.23)

Since

[ζ(ξ)]γ=0 =−
(
ϕ

rz
− 1

)(
ξn1−1n1(n2 − 1)

(n2 − n1)
+ ξn2−1n2(n1 − 1)

(n1 − n2)

)
+

ϕ

rz

=

(
ϕ

rz
− 1

)
ϱ(ξ) >

(
ϕ

rz
− 1

)
ϱ(ξ̄) = 0,

(B.24)

where we have used the fact that ϱ(ξ) is strictly decreasing in 0 < ξ < ξ̄.

Hence, we deduce that ζ(ξ) is positive for 0 < ρ < ρ∗.

For ρ ≥ ρ∗, let us the following free boundary problem:
LzQ+ ũ(z) + ϕz = 0 for ẑH < z < ẑL,

(1− γ)Q(zH) + γzHQ′(ẑH) = ẑH , Q′(zH) + γzHQ′′(ẑH) = 1,

Q′(ẑL) = 0, Q′′(ẑL) = 0.

(B.25)

For zH < z < zL, a general solution of Q(z) is given by

Q(z) = Ĉ1z
n1 + Ĉ2z

n2 +
1

K

γ

1− γ
z
− 1−γ

γ +
ϕz

rz
. (B.26)

By the same argument in the previous case for 0 < ρ < ρ∗, we have

Ĉ1 =− 1

(1− γ + γn1)

(n2 − 1)

(n2 − n1)

(
ϕ

rz
− 1

)
ẑ1−n1
H < 0,

Ĉ2 =− 1

(1− γ + γn2)

(n1 − 1)

(n1 − n2)

(
ϕ

rz
− 1

)
ẑ1−n2
H > 0.

(B.27)

Since

Q′(ẑL) + γẑLQ′′(ẑL) = 0,

we deduce that

0 = ϑ̂(ξ̂) := −n1(n2 − 1)

(n2 − n1)
ξ̂n1−1 − n2(n1 − 1)

(n1 − n2)
ξ̂n2−1 +

ϕ

ϕ− rz
, (B.28)
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where

ξ̂ :=
ẑL
ẑH

> 1. (B.29)

We can easily verify that there exists a unique ξ̂ > 1 such that ϑ̂(ξ̂) = 0. Moreover, it follows

from Q′(ẑL) = 0 that

1

K
ẑ
− 1

γ

L = −
(
ϕ

rz
− 1

)(
ξ̂n1−1

(1− γ + γn1)

n1(n2 − 1)

(n2 − n1)
+

ξ̂n2−1

(1− γ + γn2)

n2(n1 − 1)

(n1 − n2)

)
+

ϕ

rz
. (B.30)

Note that zL > 0.

Lemma 4. Q(z) in (B.26) is strictly convex in z ∈ (ẑH , ẑL).

Proof. Note that for ẑH < z < ẑL

Q′′(z) =n1(n1 − 1)Ĉ1z
n1−2 + n2(n2 − 1)Ĉ2z

n2−2 +
1

γK
z
− 1

γ
−1

. (B.31)

Let us temporarily denote φ̂(z) by

φ̂(z) := zQ′′(z) = n1(n1 − 1)Ĉ1z
n1−1 + n2(n2 − 1)Ĉ2z

n2−1 +
1

γK
z
− 1

γ . (B.32)

Since

φ̂′(z) = n1(n1 − 1)2Ĉ1z
n1−2 + n2(n2 − 1)2Ĉ2z

n2−2 − 1

γ2K
z
− 1

γ
−1

< 0, (B.33)

it follows from φ̂(ẑL) = ẑLQ′′(ẑL) = 0 that

Q′′(z) > 0 for ẑH < z < ẑL.

Sum up, we derive the strictly convex function Q(z) in the inaction region as follows:

Q(z) =


Ĉ1z

n1 + Ĉ2z
n2 +

γ

1− γ
z
− 1−γ

γ +
ϕz

rz
for ρ ≥ ρ∗,

C1z
n1 + C2z

n2 +
γ

1− γ
z
− 1−γ

γ +
ϕz

rz
for 0 < ρ < ρ∗.

(B.34)

By utilizing the standard verification arguments, We can easily show that Q(z) in (B.34)

satisfies the HJB equation (B.2), and

J(y, k, s) = ω(ks)1−γQ
(
y(ks)γ

ω

)
= sup

{G+
t ,G−

t }
inf
{Dt}

J (y, k, s; {Dt}∞t=0, {G+
t ,G

−
t }∞t=0)

= inf
{Dt}

sup
{G+

t ,G−
t }

J (y, k, s; {Dt}∞t=0, {G+
t ,G

−
t }∞t=0).

For 0 < ω < 1, the procedures and logic for deriving the solution are almost similar to the

case when ω = 1. Thus, we omit the detailed proofs.
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B.3. Proof of Proposition 3

For simplicity, we first consider the case when ω = 1.

Note that for 0 < ρ < ρ∗

WH = −Q′(zH) =− n1C1z
n1−1
H − n2C2z

n2−1
H +

1

K
z
− 1

γ

H − ϕ

rz

=
n1(n2 − 1)

(1− γ + γn1)(n2 − n1)

(
ϕ

rz
− 1

)
+

n2(n1 − 1)

(1− γ + γn2)(n1 − n2)

(
ϕ

rz
− 1

)
+

1

K
z
− 1

γ

H − ϕ

rz
(B.35)

and for ρ ≥ ρ∗

WH = −Q′(ẑH) =
n1(n2 − 1)

(1− γ + γn1)(n2 − n1)

(
ϕ

rz
− 1

)
+

n2(n1 − 1)

(1− γ + γn2)(n1 − n2)

(
ϕ

rz
− 1

)
+

1

K
ẑ
− 1

γ

H − ϕ

rz
.

(B.36)

It follows from the algebraic equations (B.8) and (B.28) that

∂ξ

∂ρ
=− 1

ϕ− rz

n1 − n2

(n1 − 1)(n2 − 1)

1

ξn1−2 − ξn2−2
> 0. (B.37)

From (B.12),

1

K
z
− 1

γ

H =−
(
ϕ

rz
− 1

)(
ξ
n1−1+ 1

γ

(1− γ + γn1)

n1(n2 − 1)

(n2 − n1)
+

ξ
n2−1+ 1

γ

(1− γ + γn2)

n2(n1 − 1)

(n1 − n2)

)
+

ϕ

rz
ξ

1
γ .

(B.38)

This implies that for 0 < ρ < ρ∗

∂WH

∂ρ
=

d

dρ

(
1

K
z
− 1

γ

H

)
=

(
ϕ

rz
− 1

)(
ξn1−1n1(n2 − 1)

(n1 − n2)
− ξn2−1n2(n1 − 1)

(n1 − n2)
+

ϕ

ϕ− rz

)
ξ

1
γ
−1

=

(
ϕ

rz
− 1

)
ξ

1
γ
−1

ϱ(ξ) > 0,

(B.39)

where we have used the fact that ϱ(ξ) is strictly decreasing in ξ ∈ (1, ξ̄) and ϱ(ξ̄) = 0.

Similarly, for any ω ∈ (0, 1], we can show that

∂WH

∂ρ
> 0,

∂WH

∂ϕ
> 0, and

∂WH

∂ω
> 0. (B.40)

40



C. Additional Figures
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Figure 13: Simulation path Zt, kt, and Wt
mt

with ρ = 0.01. The parameter set is given by γ = 2, β = 0.05, µ =

0.07, σ = 0.2, r = 0.03, ω = 0.3, ϕ = 0.02.
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Figure 14: Simulation path Zt, kt, and Wt
mt

with ρ = 0.3. The parameter set is given by γ = 3/2, β = 0.05, µ =

0.07, σ = 0.2, r = 0.03, ω = 0.3, ϕ = 0.02.
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Figure 15: WH as a function of ϱ. The parameter set is given by γ = 3, β = 0.07, µ = 0.08, µp = 0.07, σ =

0.3, σp = 0.2, r = 0.03, ϕ = 0.02, ρ = 0.02, ω = 0.5
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Figure 13 and 14 illustrate the simulation path of 50 years for Zt, k∗t , and Wt
mt

. The boundary

zL (or zH ) corresponds to the wealth level of the minimum wealth to staking ratio Wt = 0 (or

the maximum wealth to staking ratio Wm). For the case with a small ρ (Figure 13), whenever

the dual variable hits zH (or zL), the number of staked tokens kt decreases (or increases). When

ρ is large, however, even when the dual variable Zt hits the boundary zL, the staking amount kt
is unchanged as shown in Figure 14. Instead, the shadow price process Dt decreases whenever

Zt hits zL in this case.

Figure 15 shows how the correlation between the stock market and the cryptocurrency

market affects the inaction interval of the staking token. It increases as the correlation increases.
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